

Cleaner Production Assessment Report

Prepared for:

Bashar Khan

Director

Indesore Sweater Ltd., Degerchala, National University, Gazipur

Prepared by: Engineering Resources International (ERI), Banani, Dhaka

Supported by:

Asia Society for Social Improvement and Sustainable Transformation (ASSIST)

May 10, 2015

Acknowledgement

ERI Team acknowledges with gratitude to Mrs AyshaSiddika., Assistant General Manager, Admin, HR & Compliance – IndesoreSweaterLtd., Dhaka. Mrs AyshaSiddikaand her teams of Indesore Sweater Ltd. for the excellent co-operation during the visit and for providing necessary information to carry out the assessments.

#

About PaCT

PaCT is a partnership between textile wet processing factories in Bangladesh, international apparel buyers, wet processing technology suppliers, the Embassy of the Kingdom of the Netherlands (Dhaka), the International Finance Corporation (IFC), and the NGO Solidaridad.

The PaCT partners share a commitment to bring about systemic, positive environmental change for the Bangladesh textile wet processing sector, its workers and surrounding communities, and to contribute to the sector's long-term competitiveness.

To this end, the PaCT partners are collaborating to develop harmonized resource-efficiency procurement requirements, build factory capacity, technical knowledge, and access to finance for investments for Cleaner Production, and create a platform for community and national dialogue on sustainable use of water in the textile sector.

IFC has commissioned Asia Society for Social Improvement and Sustainable Transformation (ASSIST), India to support the local service provider Engineering Resources International (ERI) Ltd. based in Dhaka, Bangladesh for the execution of 50 basic CP assessments.

Disclaimer and Limitations

IFC, a member of the World Bank Group, creates opportunity for people to escape poverty and improve their lives. We foster sustainable economic growth in developing countries by supporting private sector development, mobilizing private capital, and providing advisory and risk mitigation services to businesses and governments. This report was commissioned by IFC as part of implementing the Bangladesh Water PaCT: Partnership for Cleaner Textile.

The conclusions and judgments contained in this report should not be attributed to, and do not necessarily represent the views of, IFC or its Board of Directors or the World Bank or its Executive Directors, or the countries they represent. IFC and the World Bank do not guarantee the accuracy of the data in this publication and accept no responsibility for any consequences of their use.

This report has been based on the available documents and verbal communication with factory staff and management. It is important to notice that although some compliance issues related to WASH and OHS are discussed, this report has not been prepared for compliance purposes. The content is based on voluntary information provided by the factory management and test data generated by the local service provider and factory staff. The information is time dependent, and the relevance of data, conditions of site and observations may change.

List of Acronyms and Abbreviations

BDT Bangladeshi Taka

BOD Bio-chemical Oxygen Demand
COD Chemical Oxygen Demand

CPA Cleaner Production Assessment

dB Decibel

DoE Department Of Environment

EMS Environmental Management System

GHG Green House Gas

ETP Effluent Treatment Plant ISL Indesore Sweater Ltd

IFC International Finance Corporation

IPPC Integrated Pollution Prevention Control

KPI Key Performance Indicator

kVA Kilo Volt Ampere

kVAr Kilo Volt Ampere (Reactive)

kW Kilo Watt

kWh Kilo Watt Hour

MSDS Material Safety Data Sheet

MWh Mega Watt Hour NAV Not Available

NG Natural Gas

OHS Occupational Health & Safety
PFI Power Factor Improvement

pH Power of Hydrogen

PPE Personal Protective Equipment

REB Rural Electrification Board

RPM Revolution per Minute

TDS Total Dissolved Solids
TSS Total Suspended Solids

VFD Variable Frequency Drive

WASH Water Sanitation & Hygiene

WHRB Waste Heat Recovery Boiler

WTP Water Treatment Plant

Executive Summary:

Indore Sweater Ltdis a washing processing unit, having awashing capacity of 5000 pcs (1520 kg) per day.

Except wet process, the factory has set up for washing units within the same premise. The washing and finishing units run for approximately 301 days in a year over 1 shift (general) per day. The total number of workers in the dyeing and finishing section is 35, no female workers.

Resource and Energy:

The consumption summary is given below:

Parameter	Unit	Annual consumption	Remarks
Power consumption	MWh/year	335	Based on data provided by the factory
Natural Gasconsumption	m³/year	203,216	Based on data provided by the factory
Water consumption	m3/year	65,919	Based on available water flowmeter readings

^{*}Based on 2014 data

Assessment outcomes:

The Cleaner Production Assessment (CPA) at ISL showed that significant reduction can be achieved in the consumption of water (3%) and natural gas (19%). Based on the findings of the CPA, 5 cost-effective measures for achieving significant water and energy reductionhave been identified. The summary is given below:

Area	Total number of options	Estimated investments, *USD	Economic benefits, USD/year	Environmental benefits/year
Utility	5	3,059	5,147	Water savings: 2,164 m ³ NG savings: 37,655 m ³ Electrical energy savings: 19 MWh GHG emission reduction: 75 ton
Total	5	3,059	5,147	Water savings: 2,164 m ³ NG savings: 37,655 m ³ Electrical energy savings: 19 MWh

			GHG emission reduction: 75 ton
--	--	--	--------------------------------

^{*1} USD = BDT. 78.00

KPI:

Implementing the improvements lead to the following reductions in the consumption dominant resources:

Parameter (based on 2014 data)	Unit	Current KPI	Future KPI	Reduction %
Water consumption	m ³ /year	65,919	63,755	3%
Natural Gas consumption	m³/year	203,616	165,961	19%
Steam consumption	ton/year	4,328	4,323	0.13%
Power consumption	MWh/year	335	309	6%

Cleaner Production Measures:

The details of the options generated for their benefits along with investment requirement is grouped below for implementations:

#	Measure	Estimated investment USD	Economic benefits USD/year	Environmental benefits/year	Payback time, month
		τ	Itility Area		
1	Feed tank insulation	82	44	 NG savings: 410 m3/year GHG emission reduction: 1 ton/year 	22
2	Heat recovery from all condensate	256	1,165	 Water savings: 2,164 m3/year NG savings: 13,347 m3/year GHG emission reduction: 25 ton/year 	3
3	Provide lighting control switch at accessible position and switch off lights	Nil	803	 Electrical energy savings: 7 MWh/year GHG emission reduction: 2 ton/year 	Immediate

#	Measure	Estimated investment USD	Economic benefits USD/year	Environmental benefits/year	Payback time, month
4	Installation of VFD for deep pump	1,438	1,338	 Electrical energy savings: 12 MWh/year GHG emission reduction: 8 ton/year 	13
5	Air preheater for boiler	1,282	1,795	 NG savings: 23,898 m3/year GHG emission reduction: 45 ton 	9
6	Improving metering system	Minor	Process improvement	-	-
	Total	3,059	5,147		7

Table of Content

Acknowledgement	1
Executive Summary:	4
1 Introduction	9
1.1 Company Overview	9
1.2 CP Team	9
2 Overview& Current Baselines	11
2.1 Description of ProductionProcesses	11
2.2 Actual Production	11
2.3 Main Inputs	11
2.3.1 Water	11
2.3.2 Energy:	13
2.3.3 Process Chemicals & Dyes:	15
2.4 Main Equipment	16
2.5 Waste Streams	17
2.6 Water Footprint	
2.7 Water Sanitation & Hygiene (WASH)	
2.8 Occupational Health & Safety (OHS)	
2.9 Chemical Inventory	19
2.10 Environmental Management System (EMS)	
3 Assessment and Cleaner ProductionOptions	21
3.1 Opportunities in Utility Area:	21
3.2 Opportunities in Water Sanitation & Hygiene	(WASH)23
3.3 Opportunities in Occupational Health & Safet	y (OHS)23
3.4 Opportunities in Chemical Inventory	24
3.5 Opportunities in Environmental Management	System (EMS)
4 Conclusion	26
4.1 Impact Summary of Measures Recommended	26
4.2 Impact Measures on Savings (Percentage Red	
5 Annex	27

List of Figures

Figure 1: Process sequence for sweater washing	11
Figure 2: Water Balance Diagram	13
Figure 3: Electrical Energy Balance Diagram	14
Figure 4: Steam balance diagram	15

1 Introduction

1.1 Company Overview

Company name: Indesore Sweater Ltd.

Address:

Head office:	Factory:
Degerchala, National University, Gazipur Sadar,	Degerchala, National University, Gazipur Sadar,
Gazipur-1704	Gazipur-1704

Year of establishment: 2008

Company structure: This factory is the only establishment of the company forsweaterwashing production.

Production overview: Indesore Sweater Ltd. was establishedsweaterwashing production facility. Presently, the factory has an installed capacity of around 1.25 lakh pcs/month for washing.

Clients: The major clients are H&M

Expansion plan: Indesore Sweater Ltd.

Number of employees: Presently, about 2600 employees including 520 female employees are engaged in the factory. In addition there are 10 management staffs includingafemalestaff.

Existing pollution control facilities: Factory discharges effluent water for treatment at a rate of 15 m³/hr to the Effluent Treatment Plant, which is operated only 3-4 hrs. Currently, there is no monitoring arrangement omeasure air emission pollutions.

Certifications: The factory has applied for an environmental clearance certificate from the Department of Environment (DoE), Government of Bangladesh. The factory's product range is certified against Oekotex 100 standard. They are also certified by ISO 14001, OHS 18000, SA 8000 and GOTS.

1.2 CP Team

Factory CP Team:

In order to carry out the CP assessment, a CP team was established at the factory level. Following are the members of the CP team:

Name	Designation	Designated Role in CPA
Mrs.AysaSiddika	Assistant General Manager, Admin, HR & Compliance	Coordinator
Md. Delwar	Supervisor	ProcessCoordinator
Md. Abdur Rob	Electrical Incharge	Utility Team Member
Md. Akter Ali	Senior Executive, Admin , HR & Compliance	Compliance Coordinator

The factory's CP team wasvery co-operative during the assessment. However, there is scope for strengthening the awareness on CP concept and benefits among the core team members. Sharing a standard paper prior to and during assessment can be helpful to get them involved and committed. CP core team can further disseminate the basic concepts and benefits across the factory staff.

Assessor CP Team:

The CP Assessment was carried out by following the team.

Name	Designation	Designated Role in CPA
Md. Shamsul Islam Khan	Senior Manager (Engineering Service)	ProjectCoordinator
Amin Al maksud	Senior Engineering Consultant	Utility Member
Md. SamiulHoque	Senior Engineering Consultant	Team Leader
Sathappan S	Sr. Technical Expert	OHS, WASH & EMS Consultant
Nageshkumar J	Sr. Technical Expert	Utility Consultant
Rajachidmabaram T	Sr. Technical Expert	Chemical & Safety Consultant

2 Overview& Current Baselines

2.1 Description of ProductionProcesses

ISL is a washing processing unit (washing& finishing) and capacity 1,520 kgper day.

The major production sequences of the factory are given in Figure 1.

Wet process area

Figure 1: Process sequence for sweater washing

2.2 Actual Production

The average yearly productions for 2013-14 are shown below:

Product type	Yearly production	%	Products
Washing	456,000kg	100	Sweater washing

^{*}based on 301 days/year. (Filled in data are based on 2013-14 year)

2.3 Main Inputs

2.3.1 Water

The source of water for the factory is ground water. Submersible pumps are used to abstract water.

Source	Source Average consumption/year	
Ground water	65,919m ³	7,103

^{*1} USD = BDT. 78.00

**Water cost: 36.9 BDT/m³which includes water pumping & distribution cost, treatment cost and effluent treatment cost & only water pumping & distribution cost BDT 5.9 and ETP Cost BDT 31.(Filled in data are based on 2013-14 year)

Water Baseline (KPI):

The water consumption KPI for the wet section has been calculated and presented below:

Product	Average water consumption	Average water cost/kg of product, USD
Sweater washing	14l/kg	0.01

Metering & Water Management:

ISL has installed 4 water flowmeters to partially measure the water extraction, water consumption in major processes and ETP discharge volumes. Meter readings are recorded and no water balance diagram has been established so far. As a result, no consumption analysis is carried out to establish baseline performances against different sections. No calibration plan exists for water flowmeter.

Water Balance Diagram

A water balance diagram has been established based on flowmeter readings and on-site assessment. A total of4water flowmeters are available in the factory at different points. Since water consumption data in different sections is not available water flowmeter readings are taken during assessment and these are matched with estimates of water consumptions for various operations provided by factory CP team. Clearly, the accuracy of the water balance depend on theflowmeter accuracy and the consumption data provided .

Figure 2: presents the corresponding water balance diagram:

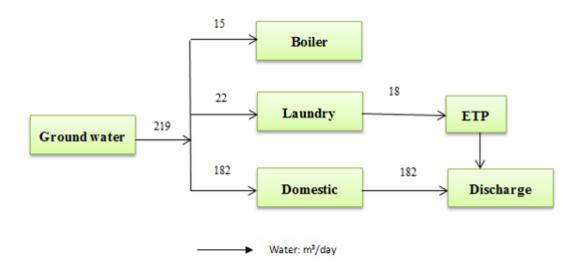


Figure 2: Water Balance Diagram

From the water balance diagram, it is perceived that the major portion of water is being consumed at the washing section.

2.3.2 Energy:

The factory is dependent on the national natural gas supply for running major equipment like boilers and few process machineries. The factory has a power supply connection from REB. Diesel are used at emergency situation to run generators.

Fuel type	Average consumption/year	Cost/year (2014), USD
Gas	203,616 m ³	15,297
Diesel	7,200 ltr	6,277

^{*}Combined power cost: 10.33 BDT/kWh.(Filled in data are based on 2013-14 year)

Electrical Energy Baseline (KPI):

The electrical energy consumption KPI for the wet processing section has been calculated and the value is shown below:

Product	Average power consumption	Average power cost/kg of product, USD
Washing	0.73 kWh/kg	0.08

Metering &Power Management:

Currently, no meter is available at the factory to measure power consumption at user point, except energy meter at REB power grid supply system. In the diesel generation side, the readings are not captured and no analysis is carried out.

Electrical Energy Balance Diagram

Electrical energy balance diagram is established using the actual power generation data taken during assessment period and load balance data given by factory. The data accuracy for the generation side should be reliable whereas consumption data would have some uncertainty.

Figure 3 presents the electrical energy balance diagram determined for the factory:

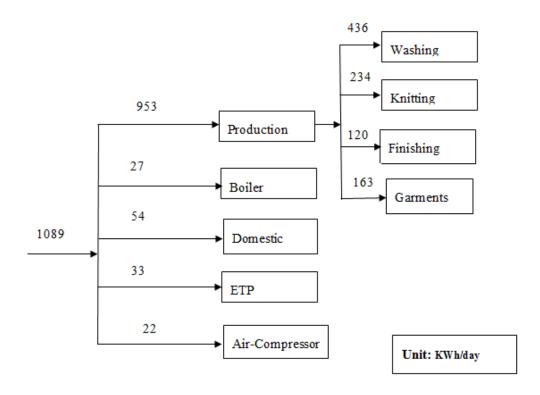


Figure 3: Electrical Energy Balance Diagram

From the energy balance diagram, it is clear that production units are themajor consumers of energy.

Steam Baseline (KPI):

The steam consumption KPI for the wet processing section has been calculated and presented below:

Product	Average steam consumption	Average steam cost/kg of product, USD
Washing	9.49 kg/kg	0.08

Since no metering is available, figures have been generated from calculations based on the data collected on-site.

Metering & Steam Management:

Currently, no meter is available in the factory to measure steam generation as well as steam consumption.

Steam Energy Balance Diagram

No meter is available in the factory to measure the steam generation as well as steam consumption. Steam balance diagram is established considering boiler specifications, running hour, feedwater consumption pattern and steam flow parameters at consumer ends.

Figure 4 presents the steam balance diagram created for the factory:

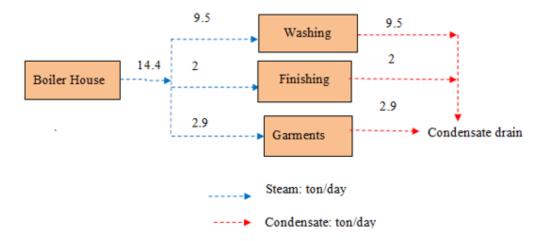


Figure 4: Steam balance diagram

2.3.3 Process Chemicals & Dyes:

The quantity and cost of the chemicals and dyes used for the process are given below,

Raw materials	Average consumption/year	Cost/year, USD
Chemical & dyes for washing*	9ton	NAV

^{*}From ISL management.(Filled in data are based on 2013-14 year)

2.4 Main Equipment

Process:

The required automation is built-in with new machines. There is no metering system with the machines. There are eight sets of washingand finishing range machineswhich have manual and automated operation capabilities. A maintenance team is working in the factory and preventive maintenances are done periodically. Establishing a preventive maintenance schedule, generating breakdown reports and analysing data would help minimizing the recurrences.

Washing Section Machines:

#	Name of Equipment	Origin	Model/Capacity	Year of manufacture	Quantity
1	Washing Machine	China, NGAI	110 lbs	NAV	8 sets
2	Hydro Extractor	China, NGAI	200 lbs	NAV	8 sets
3	Auto Gas Dryer	China, NGAI	200 lbs	NAV	2 sets
4	Dryer	China, NGAI	200 lbs	NAV	7 sets
5	Moisture Meter	Germany	NAV	NAV	1 set

^{*}NAV = Not Available

Utility:

ISL is used as a prime source of electricityREB grid while diesel generator used as standby. Both gas fired boiler with no economizerrunsaround the clock. Compressed air is supplied by air compressors. Preventive maintenance schedules are maintained.

#	Equipment type	Number of Machine	Installed Capacity	Unit
1	Boiler	2	2	ton/hr
2	Diesel Generator (Stand by)	2	1,056	kw

3	Air Compressors	1	7.5	kW
4	Major pump Motors	2	22	kW

2.5 Waste Streams

Waste Stream	Average generation	Remarks	
Wastewater	18 m ³ /day From ETP Flow meter reading		
COD in discharging water	0.52 ton/day	From ETP outlet water quality report	
Solid waste (ETP sludge)	4 kg/day	Sold to authorized buyers and 3 rd parties	
Solid waste (others)	0.2 ton/day	Sold to authorized buyers and 3 rd parties	
CO ₂ emission (GHG effect)	02 ton/day	CO ₂ emission factor: 0.000203 ton CO ₂ /kWh CO ₂ emission factor: 0.001888 ton CO ₂ /m ³ NG	

Waste Stream Characterisation

Wastewater analysis is carried out by outside agencies and one report is available on wastewater characteristics. Some minor variations are observed in the various parameters in these reports. The analysis presented in the last available report is shown below.

Factory provided report results (done by BUET, on 19/6/2014):

Waste stream/Parameters	TDS, (ppm)	pН	Temperature (°C)	COD (mg/l)	BOD (mg/l)	DO (mg/l)
Inlet water to ETP	NA	NA	NA	NA	NA	NA
Outlet water from ETP	NA	7.32	NA	44	12	NA
DoE Requirements	<2,100	6.0-9.0	*NS	<200	<50	4.5-8.0

*NS: Not specified

2.6 Water Footprint

Factory uses ground water to meet all its processing needs. Generated wastewaters are discharged into the canal after treatment in the ETP.

Water Footprint has been calculated from the available data. The following table shows the values of various Blue and Grey water footprint of the factory.

Blue Water Footprint:

Parameter	m³/day	m³/kg of product
Blue water footprint for factory	219	0.17
Blue water footprint for washing	18	0.014

Post data source: Factory flow meter

2.7 Water Sanitation & Hygiene (WASH)

Overall Drinking Water Supply System:

- Source of the drinking water: Underground water.
- Water treatment of drinking water (filtration, cooling): Water treatment is available and 1 dispenser is provided for water.
- Water quality: Drinking water tested twice in a year form BUET.
- Test report is available and water parameters are within acceptable limits.
- Drinking water management: Workers collect drinking water from a container transferred by a tank.
- Drinking water frequency: 5-6 times by each worker per day.
- The responsibility for proper functioning: There is a responsible person in the factory for maintaining the drinking water facilities.

Existing Sanitation Facilities:

- Labour law: Currently the toilet to worker ratio is 1:7 for males.
- Showers and washing rooms: Not available.
- Responsibility for sanitation: There is a responsible person in the factory for maintaining the sanitation facilities.

2.8 Occupational Health & Safety (OHS)

The factory has established an operating structure to manage health and safety issues. The following good practices are in place:

- A health and safety policy is in place.
- PPE are provided to workforce.
- Fire equipment like fire extinguishers and fire hydrant systemsareavailable in sufficient number.
- Floor demarcations are done andwell maintained.

- First Aid boxes are available in the process area.
- Emergency exit sign, evacuation plan and safety awareness posters are available in the process area.
- Trainings are conducted when required.
- Factory maintains a common register for all accident records; dyeing section accidents are not kept separately. For 2014 the overall accident rate was 4/month.
- An emergency response team (Fire and First Aid team) has been established.
- Mock emergency drills are organized frequently.

There are some observations for "Occupational Health & Safety (OHS)" which are given below:

- The main chemical store is well organized. The following were observed in the chemical sub-store, although these could be easily improved:
 - a) Labelling is not consistent
 - b) Secondary containment is missing for liquid chemicals
 - c) MSDS is not displayed for all chemicals and dyes
 - d) Eyewash and shower need improvements
 - e) Chemical handling procedure is not available
- Materials were stored on the walkway and behind the machines in some of the places in the wet processing zone.
- Appropriate number of PPE is supplied, but workers often appeared reluctant to use it properly.
- A number of electrical panels were found open in which dust accumulation could increase the fire and safety hazards.
- Appropriate number of fire extinguishers and fire alarms are available in the factory premises; however, no visual signalling devices present in the high noise areas such as the generator room.

2.9 Chemical Inventory

- The factory is aware of the banned chemicals and collects compliance statements from all of their suppliers in order to avoid unintentional use.
- Their product range has been certified against Oekotex standard 100 which warrants that textiles are free from harmful substances.
- An inspection of the chemical storage and available MSDS didnot reveal any banned chemicals.

2.10 Environmental Management System (EMS)

The factory has established a simplified environmental policyandprocedure. General awareness programs are organized for the workforce on water use reduction and waste management.

The factory has the clearance certificate from the Department of Environment (DoE). Periodic checks are being carried out as per law. An operational ETP treats the wastewater generated in the factory before discharging.

Some observations are found during the assessments which are given below:

- There are designated areas to store wastes; however, segregation and labelling are not always
 in place. A waste management procedure needs to be developed.
- HR & Admin officer have shared responsibilities for the environmental issues; however, no specific person is assigned to work on it.
- No structural approach to address environmental issues.

3 Assessment and Cleaner ProductionOptions

3.1 Opportunities in Utility Area:

Option 1:Feed Tank Insulation

Observation: Feed tank un-insulated

Description of option	Technical feasibility	Environmental feasibility	Economic feasibility
Un-insulated tank reduce heat loss.	Proven technology	 NG saving: 410 m³/year GHG emission reduction: 1 ton/year 	 Estimated investment: 82 USD Annual saving: 44 USD Payback: 22 months

Option 2: Heat Recovery from Condensate

Observation: It is noted during assessment that condensate is drained instead of recovering it from the garments Iron section& dryer because of condensate return system available.

Description of option	Technical feasibility	Environmental feasibility	Economic feasibility
Adapting a complete system to recover all	Proven technology	• Water saving: 2,164m³/year	• Estimated investments: 256 USD
possible condensates and utilize both heat and water.		• NG saving: 13,347m³/year	• Annual savings : 1,165 USD
		GHG emission reduction: 25 ton/year	Payback: 3 months

Option 3: Providing Lighting Control Switch at Accessible Position & Switch off Lights

Observation: At daytime unnecessary lights switch are on.

Description of option	Technical feasibility	Environmental feasibility	Economic feasibility
The switches for the lamps are provided near the roof making it difficult for switching off & daytime switch on where no need lights.	Known technology and available materials	 Electrical energy saving:7 MWh/year GHG emission reduction: 2 	 Estimated investment: Nil Annual saving: 803 USD Payback: Immediate

ton/year	
----------	--

Option 4: Installation VFD for Deep pump

Observation: There is no VFD for deep pump.

Description of option	Technical feasibility	Environmental feasibility	Economic feasibility
Installation of VFD for deep pump willsave significant amount of electrical energy.	Known technology and available materials	 Electrical energy saving: 12 MWh/ year GHG emission reduction: 3 ton/year 	 Estimated investment: USD 1,438 Annual saving: USD 1,338 Payback: 13 months

Option 5: Air Preheater for Boiler

Observation: Currently, exhaust gas heat of boiler are not utilised.

Description of option	Technical feasibility	Environmental feasibility	Economic feasibility
Significant amount of gas can be saved by installing an air preheater.	Known technology and available materials	 NG saving: 23,898 m3/ year GHG emission reduction: 45 ton 	 Estimated investment: 1,282 USD Annual saving: 1,795 USD Payback: 9 months

Option 6: Improving metering system

Observation: Presently the factory has the following metering systems;

- Total 4 water flowmeters are installed onthedistribution lines across different sections and at ETP inlets.
- Energy meters are available with the National Power Supply system, but are not available in each section or with major equipment diesel generator.

No steam meters are available

Description of option	Technical feasibility	Environmental feasibility	Economic feasibility
A proper metering system will help understanding the consumption patterns and allow	Meters available	No impact	No straight forward payback, but metering will help to set benchmarks, allow data

analysis which could be used to			collection and analysis, monitor
determine corrective measures			and identify unusual resource
for any unusual resource usage.			usage and help
			determiningnecessary corrective
			actions.
	[l	

Measuring consumption will automatically lead to an improved awareness and a strengthened resource management. Similar textile industries have shown that water consumption could be reduced between 20 to 40% and energy consumption between 10 to 20%.

3.2 Opportunities in Water Sanitation & Hygiene (WASH)

Suggestions for Drinking & sanitation Water Facilities Supply System:

Factory management can arrange awareness sessions to improve the hygiene practices of workers in a healthy environment.

#	Description of option	Investment Category	Environment Impact
1	Ensure drinking water quality and testing frequency as per regulatory standard	Minor	Regulatory Compliance
2	Ensure cleanliness of toilets and availability of hand wash materials at toilets	Minor	Ensure healthy and hygienic environment
3	Raise awareness among workforce on hygiene practices	-	Ensure healthy and hygienic environment

3.3 Opportunities in Occupational Health & Safety (OHS)

From the assessment, following few areas have been identified where an improvement can enhance the safety standards:

#	Description of option	Investment Category	Environment Impact
4	Improve housekeeping	Minor	Ensure safe working environment
5	Improve electrical safety and machine guarding	Minor	Ensure safe working environment
6	Strengthen the accident investigation procedure	Minor	Ensure safe working environment
7	A monitoring system could be in place to ensure usage of PPE.	Minor	Ensure safe working environment

8	Briefing sessions and trainings could be arranged for the associated workforce on electrical hazards, their consequences, safe practices and corresponding mitigation actions	Minor	Ensure safe working environment
9	Forced ventilation could be ensured to avoid high temperature	Minor	Ensure safe working environment
10	A housekeeping check sheet and periodic monitoring program could be developed and used to create a sustainable system	Minor	Ensure safe working environment

Note: Relevant checklist is showninthe Annex

3.4 Opportunities in Chemical Inventory

#	Description of option	Investment Category	Environment Impact
1	Improve labelling and MSDS display	Minor	Ensure safe handling
2	Standardize the chemical sub-stores	Minor	Ensure safe working environment
3	Secondary containment needs to be ensured for liquid chemicals	Minor	Ensure safe working environment
4	User friendly eye wash and shower with continuous water supply facility needs to be ensured	Minor	Ensure safe working environment

3.5 Opportunities in Environmental Management System (EMS)

The factory has established a simplified environmental policyandprocedure. General awareness programs are organized for the workforce on water use reduction and waste management.

The factory has applied fortheclearance certificate from the Department of Environment (DoE). Periodic checks are being carried out as per law. An operational ETP treats the wastewater generated in the factory before discharging.

	#	Description of option	Investment Category	Environment Impact
1	1	Establish specific environmental policy and procedures	Minor	Ensure environmental awareness and compliance
2	2	Proper labelling and segregation of waste	Minor	Ensure environmental awareness and compliance

3	Waste management procedures' development and training	Minor	Ensure environmental awareness and compliance	
4	Assign roles and responsibilities to achieve environmental improvement targets	Minor	Ensure environmental awareness and compliance	

4 Conclusion

4.1 Impact Summary of Measures Recommended

Total 5 options have been identified in the utility section. A summary is given in the table below:

Area	Total number of options	Estimated investments, *USD	Economic benefits, *USD/year	Annual environmental benefits
Utility	5	3,059	5,147	Water savings: 2,164 m ³ NG savings: 37,655 m ³ Electrical energy savings: 19 MWh GHG emission reduction: 75 ton

^{*1} USD: BDT. 78.00

The total amount of savings calculated is 5,147 USD. The savings are based on the reduction in costs of water, steam, natural gas and electricity usage. The total estimated investment to realize all the recommended benefits is 3,059 USD, with an estimated payback period of about 7 months.

4.2 Impact Measures on Savings (Percentage Reduction)

The main objective of the CPA is to assess Water, Energy, Chemicals, Occupational Health & Safety (OHS), WASH, Water Footprint and the Environmental Management System (EMS). The chart described below gives a qualitative assessment in the above mentioned major four areas. The general assessment of the industrial set up is given in the centre. The factory team and the senior management were found to be very cooperative and have supplied the required data to the best of their abilities.

At ISL, thirteen options have been identified in the process and utility areas, which have the potential to save approximately 5,147 USD with an investment of 3,059 USD. The resource savings compared to the consumption is shown in the table below:

Resource/impact	Annual savings	Annual consumption/generations
Water, m ³	2,164	65,919 (3% reduction)
Electricity, MWh	19	335 (6% reduction)
NG, m ³	37,655	203,616 (19% reduction)
Steam, ton	6	4,328 (0.13% reduction)
GHG, ton CO ₂ e	75	466 (16% reduction)

5 Annex

The following documents are available upon request:

- Pre-assessment checklist
- Water footprint checklist
- WASH checklist
- OHS/EMS checklist
- CP checklist
- Certifications: DoE Clearance Certificate, Oekotex
- Water test reports (raw, WTP outlet, boiler feed water)
- Confirmatory certificates from Suppliers against non-existence of bannedchemicals
- Relevant Photographs against options
- Layouts (Electrical distribution, Compressed air, Cooling water, Steam and condensate, ETP, water etc.)
- Solid waste list
- Saving calculations against the options